

Customer Specific Product Data Sheet

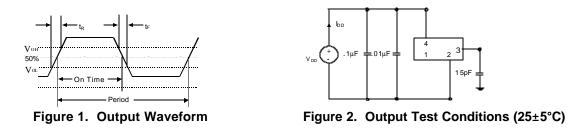
VTB4-1000-20M000 CMOS TCXO

Pin Information

Table	Table 1. Pin Function						
Pin	Symbol	Function					
1	NC	No Connect					
7	GND	Case Ground					
8	Output	CMOS Output waveform					
14	V _{DD}	Power Supply Voltage (3.3 V \pm 5%)					

Performance Characteristics

Table 2. Electrical Performance							
Parameter	Symbol	Minimum	Typical	Maximum	Units		
Nominal Output Frequency	f ₀	-	20.000	-	MHz		
Supply Voltage ¹	V _{DD}	3.14	3.3	3.47	V		
Operating Temperature Range	T _{OP}	0		+70	°C		
Storage Temperature	T _{stor}	-40		+85	°C		
Supply Current	I _{DD}			20	mA		
Output Voltage Levels (from V _{DD}) High Low	V _{OH} V _{OL}	2.2		0.40	V		
Output Current Levels High Low	юн ЮL	-4.0		+4.0	mA		
Output Rise/Fall Time ²	t _R /t _F			5	ns		
Output Duty Cycle or Symmetry ³	D	40		60	%		
Stability over operating temperature/initial tolerance/ 15 years aging/ power supply and load variation	deltaf/f _O	-4.6		+4.6	ppm		
Jitter, 10Hz to 20MHz, RMS			2	5	pS		
Jitter, 12kHz to 20MHz, RMS			0.5	1	pS		
Phase Noise					dBc/Hz		
10 Hz				-70			
100 Hz				-100			
1kHz				-125			
10kHz				-135			
100kHz				-140			
Start Up Time	T _{su}			10	mS		


1. A 0.1 μ F low frequency ceramic bypass capacitor in parallel with a 0.01 μ F high frequency ceramic capacitor is recommended.

2. Figure 1 defines these parameters. Figure 2 illustrates the operating conditions.

3. Duty cycle is defined as (on time/period) per Figure 1.

4. Measured using a Wavecrest DTS2075 or equivalent.

Vectron International •267 Lowell Rd, Hudson, NH 03051 • Tel: 1-88-VECTRON-1• http://www.vectron.com

Recommended Reflow Profile:

This oscillator contains a quartz crystal which is susceptible to damage if handled roughly or dropped. Transportation and handling should be carefully performed. ESD precautions should be taken. When stored, units should be kept in conductive containers and only handled at properly grounded workstations by operators using proper ESD procedures.

We recommend hand placing and hand soldering units into a PCB. The soldering tip and temperature should be appropriate for 60/40 type solder. Once installed and inspected a non-aqueous board wash is recommended. If cleaning is required then a manual brush cleaning with an appropriate solvent is recommended. Care should be given to prevent mechanical shock to the unit.

If not hand placed then we recommend the following solder profile:

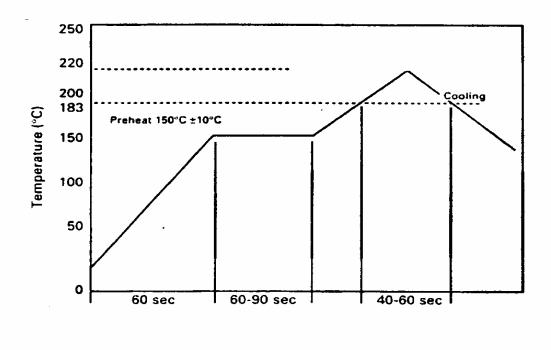


Figure 4 IR Reflow Diagram

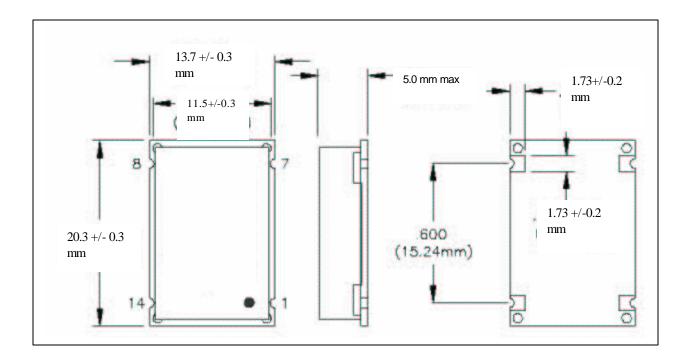


Figure 4. Outline Diagram

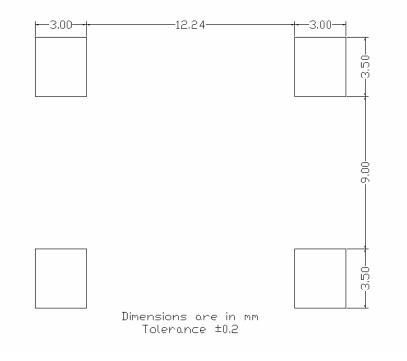


Figure 5. Suggested Pad Layout

Ordering Information: VTB4-1000-20M000

Table 4. Revision Control							
Revision History	Date	Ву	Description				
-	02/03/04	FBoudreau	Initial				
A	2/10/04	FBoudreau	Change stability spec, +/-4.6 ppm min, to -4.6 min and +4.6 max. Delete references to tristate.				
В	8/13/04	FBoudreau	Correct package drawing dimensions, add suggested pad layout, correct test circuit diagram				

USA: Vectron International • 267 Lowell Road, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • Fax: 1-888-FAX-VECTRON

Vectron International reserves the right to make changes to the product(s) and/or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.